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INTRODUCTION: Aging is a natural process that
is associated with the gradual decline of tissues
in the body. This process increases the risk of
developing various diseases, such as cardiovas-
cular and neurodegenerative diseases and can-
cers. The study of aging has a long history, and
several aging hypotheses have been proposed.
Nonetheless, there are still many unanswered
questions when it comes to understanding the
effects of aging on the composition and mainte-
nance of different cell types. It is also not clear
whether all cell types age at the same rate or
whether the transcriptome of one cell type
can be used to predict age. Additionally, the
genes and signaling pathways that contrib-
ute to aging in different cell types are not yet
fully understood.

RATIONALE:Drosophilamelanogaster, common-
ly knownas the fruit fly, has played a vital role in
advancing the fields of genetics, neurobiology,
development, and aging. A large portion (~75%)
of genes associated with human diseases have

counterpartswith functional similarity in the fly.
The fly is also a usefulmodel organism for study-
ing the aging process, as it displays several age-
related functional changes observed in humans,
such as decreased motor activity, learning and
memory, cardiac function, and fertility. There-
fore, a comprehensive understanding of the
molecular and genetic mechanisms underly-
ing age-related decline in flies can provide
valuable insights not only for aging studies
in this species but also in other organisms, in-
cluding humans.

RESULTS: Advancements in single-cell RNA se-
quencing technologies and the creation of the
Fly Cell Atlas (FCA) have enabled the investi-
gation of aging phenotypes at the single-cell
level in D. melanogaster. Here, we present the
Aging Fly Cell Atlas (AFCA), a single-nucleus
transcriptomic map that characterizes changes
in most tissues of male and female flies across
their life span. Our analysis provides insights
into age-related gene expression changes, al-

terations in cell composition, and common path-
ways that correlate with aging. Notably, we
observed an increase in fat body nuclei and
elevated apoptotic markers in old indirect flight
muscles, which potentially contribute to the age-
related decrease in muscle nuclei. We also de-
veloped aging clock models that predict an
animal’s age from single-nucleus transcriptomic
data. Additionally, we found variances in aging
for expressed gene number and cell type iden-
tity, with different cell types being differentially
affected by different aging features.

CONCLUSION: The AFCA is a valuable resource
and will be of interest to the aging research
community. It provides an important and
timely resource for studying aging and age-
related diseases. It has the potential to serve
as a reference of whole-organism aging that
can be used as a baseline for exploring dif-
ferent age-related diseases and understand-
ing how different longevity perturbations
increase life span at a cellular resolution. The
ease of creating whole-fly aging atlases makes
D. melanogaster a key model organism for ex-
amining the intersection of genetics, cell biology,
and physiology going forward. We have devel-
oped a user-friendly data portal and provided
access at the CELLxGENE. All resources can
be accessed at https://hongjielilab.org/afca/.▪
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The Aging Fly Cell Atlas.
The AFCA includes single-
nucleus transcriptomes
of 868,000 nuclei across
the Drosophila life span.
Males and females were
sequenced separately. We
characterized 163 distinct
cell types, developed aging
clock models, and com-
bined four aging features
to rank the aging rate of
different cell types. [Figure
created using Biorender]
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Aging is characterized by a decline in tissue function, but the underlying changes at cellular
resolution across the organism remain unclear. Here, we present the Aging Fly Cell Atlas, a single-nucleus
transcriptomic map of the whole aging Drosophila. We characterized 163 distinct cell types and performed an
in-depth analysis of changes in tissue cell composition, gene expression, and cell identities. We further
developed aging clock models to predict fly age and show that ribosomal gene expression is a conserved
predictive factor for age. Combining all aging features, we find distinctive cell type–specific aging patterns.
This atlas provides a valuable resource for studying fundamental principles of aging in complex organisms.

A
ging is characterized by the progressive
decline in tissue function across the en-
tire body. It is a major risk factor for a
wide range of diseases, including cardio-
vascular diseases, cancers, and neuro-

degenerative diseases (1, 2). Aging phenotypes
have been observed and described for centu-
ries, and a number of different aging hypothe-
ses have been proposed (3). However, critical
questions remain largely unaddressed in com-
plex organisms: How does aging affect cell
composition and themaintenance of specific
cell types? Do different cell types age at the same
rate? Canwe use one cell type’s transcriptome to
predict age?What genes and signalingpathways
drive aging in different cell types?

The fruit fly, Drosophila melanogaster, has
been at the basis of many key discoveries in ge-
netics, neurobiology, development, and aging.
About 75% of human disease–associated genes
have functional homologs in the fly (4, 5). Many
of the age-related functional changes in humans
are also observed in flies, including a decline
in motor activity, learning and memory, car-
diac function, and fertility (6). Hence, a proper
description of the molecular and genetic basis
of the age-related decline in flies should pro-
vide an important resource for aging studies
not only in flies but also in other organisms.
The recent development of single-cell RNA

sequencing (scRNA-seq) technologies and the
establishment of the Fly Cell Atlas (FCA) (7), a
single-nucleus transcriptomic atlas of Dro-
sophila at the age of 5 days (5d hereafter), have
made it possible to investigate aging phenotypes
across the whole organism at single-cell reso-
lution. Here, we present the Aging Fly Cell Atlas
(AFCA), a single-nucleus transcriptomic map
describing age-related changes in most tissues,
including those that differ by sex.We performed
an in-depth analysis of age-related gene expres-
sion and cell composition changes across the
entire fly, as well as cell type–specific and com-
mon pathways that correlate with aging. No-
tably, we observed a significant increase of fat
body nuclei and a drastic decrease in muscle
nuclei with age. Furthermore, we developed
aging clock models that predict the animal’s
biological age from the single-nucleus tran-
scriptomic data. In addition, we found aging
variances in expressed gene number and in
cell type identity. Our analysis revealed that
different cell types are differentially affected
by different aging features. The AFCA pro-
vides a valuable resource for the Drosophila
and aging communities as a reference to study

aging and age-related diseases and to evaluate
the success of antiaging regimens.Wedeveloped
a website portal for data visualization and cus-
tom analyses and made data available at the
CELLxGENEportal (figs. S1 andS2). All resources
can be accessed at https://hongjielilab.org/afca.

Results
Single-nucleus transcriptomes of the entire fly
at different ages

To generate the AFCA, we applied the same
single-nucleus RNA sequencing (snRNA-seq)
pipeline used for the FCA (5d adults) (7) and
profiled the whole head and body at three ad-
ditional ages (30d, 50d, and 70d). These time
points were chosen to cover the life-span tra-
jectory of a fly (Fig. 1A) and beyond, up to 70d,
the estimated equivalent of 80- to 90-year-old
humans. Male and female flies were sequenced
separately, allowing the investigation of sexual
dimorphism during aging (Fig. 1B). To achieve
the most reliable analyses of aging features, we
performed preprocessing of this newly gener-
ated aging data similarly to that done on the
young FCA data (fig. S1A). Consistent with a
previous scRNA-seq study of the aging fly brain
(8), we found that young and old cells have a
similar distribution in the t-distributed sto-
chastic neighbor embedding (tSNE) space,
suggesting that the whole organism largely
maintains its cell types during aging (Fig. 1C).
Overall, we obtained >868,000 nuclei cover-
ing all 17 broad cell type classes (Fig. 1, D and
E). The detected numbers of expressed genes
and unique molecular identifiers (UMIs) were
largely consistent across different ages (fig. S3).
The most abundant cell classes were neurons,
epithelial cells, muscle cells, and fat cells. Next,
we annotated those broad cell classes into de-
tailed cell types.

AFCA cell type annotation and resource for
studying cell type–specific aging

Because cell type–specific aging analysis largely
depends on accurate cell type annotation, we
took multiple approaches to ensure that our
AFCA data were annotated with high confi-
dence. We first co-clustered our aging data
with the annotated FCA data, either from the
head or body or from individual tissues. Then
we transferred AFCA annotations using both
a cluster-centered method and a supervised
machine learning–based method (figs. S4 and
S5). Overall, we found that these two approaches
agree well, with ~80% overlap (Fig. 2A). The
discrepancies of the nonoverlapping annota-
tions were mostly due to uncharacterized cell
types in the FCA data or cell types with aging
differences. Next, we manually validated each
annotation using cell type–specific markers.
Marker validation confirmed the accuracy of
our automatic annotation procedure, with a
few exceptions, such as indirect flight muscles
because of age-related loss of specific markers
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(fig. S6, A and B) and gut cell types because of
the high similarity between intestinal stem
cells and renal stem cells (fig. S6C). These cell
types were then manually added and corrected
(figs. S5 and S7). Overall, we characterized 163
distinct cell types, including 91 cell types from
the aging head and 72 cell types from the aging
body (Fig. 2B and figs. S8 and S9).
For complex tissues such as the brain, more

cell types can emerge when substantiallymore
cells are sequenced (9–11). Indeed, 17 additional
neuronal cell types emerged after combining
young and old head data (Fig. 2C). Among them,
four types are GABAergic neurons (Gad1+), two
are glutamatergic neurons (VGlut+), and the
remaining 11 are cholinergic neurons (VAChT+)
(fig. S10).

Next, we assessed the reliability of AFCA data
for investigating age-related changes in specific
cell types. As a case study, we focused on the fly
gut, for which the somatic stem cell lineage and
its aging have been well characterized (12). In a
healthy young fly gut, intestinal stem cells (ISCs)
maintain gut homeostasis through proper pro-
liferation and differentiation. In old flies, ISCs
exhibit a highproliferation rate, and their daugh-
ter cells, enteroblasts (EBs), do not properly dif-
ferentiate into mature enterocytes, leading to a
dysplasia phenotype (13–15). We first extracted
six major gut cell types and performed pseudo-
time trajectory analysis (16, 17). There was a
significant increase of ISCs and EBs along with
a decrease of fully differentiated enterocytes,
consistentwith previous in vivo studies (Fig. 2D

and fig. S11) (18), and we could identify genes
that showed different dynamic patterns between
young and old flies (fig. S11E). As demonstrated
by this case study, the detailed annotations
in our AFCA data offer a valuable resource to
explore cell type– and tissue-specific aging
signatures.

Cell composition changes during aging

In complex organisms, aging can affect cellu-
lar composition in different ways, such as
changing stem cell proliferation or differen-
tiation processes, altering cell identity, or in-
ducing cell death. We assessed whether and
how aging affects cellular composition across
the whole fly. Note that ourmeasurements are
based on nuclei composition. Given that the
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Fig. 1. Overview of the AFCA.
(A) Flowchart of the snRNA-seq
experiment. Flies were collected at
30, 50, and 70 days. The heads
and bodies of males and females
were processed separately.
5d samples were from the FCA.
FACS, fluorescence-activated cell
sorting. (B) Number of nuclei
collected from different ages and
sexes. (C) tSNE visualizations of
the head and body samples from
different ages. (D) tSNE visual-
izations showing broad cell classes
of datasets integrated across dif-
ferent time points. (E) Number of
nuclei for each broad cell class
shown in (D).
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Fig. 2. AFCA resource and changes of cell composition during aging.
(A) Flowchart of transferring annotations from the FCA to the AFCA. (B) Cell
types annotated in the AFCA head and body shown on tSNE. The number of
annotated cell types corresponding to the broad cell classes is shown in the table.
(C) Identification of 17 additional neuronal clusters after combining AFCA and FCA
head data. (D) Pseudotime and cellular composition of ISC and ISC-differentiated cell
types. ISC, intestinal stem cell; EB, enteroblast; EC, enterocyte; EE, enteroendocrine
cell; a. EC, anterior EC; p. EC, posterior EC; diff. EC, differentiating EC. (E) Changes
of cellular composition during aging. Each dot represents one cell type. Each
color compares one aged sample and the 5d sample. Dot sizes reflect the nuclear
numbers of the corresponding cell type from the aged population. Tissue origins

are indicated. (F) Comparison of the number of nuclei of the fat body from young
and old flies. Nuclei are stained by 4′,6-diamidino-2-phenylindole (DAPI) and
counted in each fly. The nuclear number is significantly increased in the 50d
population (t-test, 50d versus 5d, P = 0.0023). Error bar, standard deviation (SD).
(G) Representative confocal images showing nuclei in young and old fat body
cells. The membrane is labeled by cg-GAL4 > UAS-CD8GFP. Nuclei are stained by
DAPI and the LamC antibody. (H) Fat body cells with segregating nuclei stained by
pH3, DAPI, LamC, and GFP. (I) Indirect flight muscle stained with cleaved-
Caspase3 antibody, DAPI, and phalloidin. Cleaved-Caspase3 signals are signifi-
cantly increased in the aged population (t-test, 50d versus 5d, P < 0.0001).
Median numbers are indicated.

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org on June 15, 2023



nuclei are extracted from the whole head and
bodywithminimal sampling bias, the ratio for
each cell type in our sequencing data should
largely reflect their composition in vivo.
To perform reliable analyses, we focused on

cell types that have >500 nuclei in total (112 cell
types after filtering). We then calculated the
composition changes by comparing three older
ages (30d, 50d, and 70d) to young flies (5d).
The top five increased cell types are cardia cells
(proventriculus from the gut), fat body cells,
male accessory gland main cells, EBs, and adult
salivary gland cells (Fig. 2E). Comparing two
consecutive ages showed similar results (fig.
S12). Age-related increases of proventriculus
cells, male accessory gland main cells, and EBs
have been reported previously (19–21), confirm-
ing the quality of our data and analysis. Fat
body cells are one of the most abundant cell
types in Drosophila. They are polyploid, filled
with lipid droplets, and tightly attached to the
abdominal cuticle. These features make it dif-
ficult to isolate them or to compare their com-
positions using traditional methods. To our
knowledge, an increase of fat body nuclei in
old flies has not been reported. We were able
to validate this observation (Fig. 2F).
Fat body cells are postmitotic cells, and no

adult stem cells or progenitors have been re-
ported for regeneration (22). To examine why
fat body nuclei were increased in old flies, we
first checked the number of nuclei within sin-
gle cells using a fat body–specific GAL4 driv-
ing cell membrane green fluorescent protein
(GFP). Many aged fat body cells exhibited an
increase in cell size and contained multiple
nuclei per cell (Fig. 2G). The multinucleated
phenotype can potentially be caused by cell
membrane fusion, as reported in other cell
types (23), but it cannot explain the increase
in the number of nuclei (Fig. 2, E and F). It has
been reported that polyploid enterocytes from
the fly gut can undergo nuclear cleavage with-
out mitosis (a process called amitosis) (24). To
test this possibility, we performed immuno-
histochemistry to detect the nuclear lamina
protein, Lamin C (LamC), and amitosis marker,
Phospho-Histone H3 (pH3). We did not detect
anymitotic events from >60 flies across differ-
ent ages, butwe did observemany cases where
two nuclei were localized very close to each
other and were negative for the mitotic marker
(Fig. 2H). Three-dimensional reconstruction
of confocal images confirmed that these nuclei
were present in the same cell without a sep-
arating cell membrane (movies S1 to S3). Such
events were captured across different ages (fig.
S13). Together, these data suggest that fat body
cells undergo nuclear division without cyto-
kinesis across different ages, leading to multi-
nucleated cells and an increase in the number
of nuclei in older flies.
Among the top five decreased cell types are

three types of muscle—indirect flight muscle,

visceral muscle, and othermuscle cells (mostly
skeletal muscle) (Fig. 2E). Loss of muscle mass
and strength, known as sarcopenia, is a con-
served aging phenotype across different mam-
mals, including humans (25). Our in vivo staining
data confirmed the age-related degeneration
of indirect flight muscles as well as a signifi-
cant increase of an apoptosismarker, Caspase3,
in old flies (Fig. 2I and fig. S14), consistent
with a previous study (26). Germline cells also
showed a significant decrease (Fig. 2E and fig.
S12), presumably contributing to the decline
of fecundity in old flies. Most cell types from
the head, mostly neurons, showed minimal
cellular composition changes (Fig. 2E and
fig. S12).

Differentially expressed genes

Altered gene expression is another consequence
of aging (27). To assess such changes, we per-
formed differentially expressed gene (DEG)
analysis between young and old flies and ranked
cell types on the basis of the number of DEGs
(Fig. 3A and fig. S15A). Again, we focused on 112
cell types with >500 cells for a reliable analysis.
In the body, the cell type with the highest num-
ber of DEGs was the fat body, while the most
affected cell type in the head was the outer
photoreceptor (Fig. 3A).
To explore the dynamics of cell type–specific

changes, we further examined the time window
during which cell types change the most by
computing DEG numbers between two neigh-
boring ages (fig. S15B) and normalizing their
ratios (Fig. 3B and fig. S16). This analysis re-
vealed several notable insights (Fig. 3, B and
C). Specifically, ~80% of the cell types showed
major changes (>50% of DEGs) during the
first time window, suggesting that 30-day-old
flies have captured a large portion of age-related
gene changes. Some cell types, such as the male
accessory gland, showed minimal changes in
the last timewindow, indicating that these cell
types reach their maximum transcriptomic
changes around 50d. However, 5.3% of cell
types, including intestinal stem cells and cardia
cells, showed drastic changes (>50% of DEGs)
in the last time window, suggesting that they
age at a slower rate during the first 50d. Other
cell types such as outer photoreceptors and fat
body cells showed a steady change. Hence, this
analysis indicates that different cell types age
at different rates and exhibit distinctive pat-
terns of gene expression changes. We com-
pared DEGs from the AFCA with those from
the aging fly brain study (8) and found that
they are well correlated (fig. S17).
By integrating cellular composition changes

and DEG analysis, we determined which cell
types were affected by those two parameters
(Fig. 3D). Significantly affected cell types (“out-
liers”) fell into four categories: (i) cells showing
changes for both, such as fat body cells from
the body, pericerebral adult fat mass (fat cells

from the head), and male accessory gland main
cells; (ii) cells showing high DEGs but minimal
composition changes, such as outer photorecep-
tors and cone cells, consistent with a previous
study reporting that age-related fly visual de-
cline is not attributable to the loss of photore-
ceptors (28); (iii) cells showing decreased nuclear
number and amoderate number of DEGs, such
as indirect flightmuscles; and (iv) cells showing
increased nuclear number but minimal DEGs,
such as cardia cells.
Next, we performed sex-related analysis. We

first observed that female marker yolk protein
genes (Yp1, Yp2, and Yp3) showed a significant
decrease during aging in most female cell
types, while themale markers (roX1 and roX2)
maintained high expression levels in most
male cells (fig. S18, A and B). In addition, some
genes, such as Lsd-2 and CG45050, showed dif-
ferent trends between males and females with
age (fig. S18C), suggesting that aging affects
male and female cells differently. It has been
shown previously that different cell types ex-
hibit different DEGs in males and females at a
young age (7). We next checked how these
numbers change during aging. Generally, if
one cell type showed a high or low number of
DEGs at a young age, it maintained that high
or low number during aging (fig. S19A). How-
ever, some cell types showed age-specific sex
differences. For example, three cell types from
the head—pericerebral adult fat mass, skeletal
muscle, and hemocyte—all showed few DEGs
in young flies but many DEGs in old flies (fig.
S19, B and C). In contrast, three glial popula-
tions showed a significant decrease of DEGs
with age. We also checked how sex affects the
DEG number and cell composition and found
that these two features highly correlate be-
tween male and female flies (fig. S19, D to G).

Analysis of gene pathways

Next, we investigated which genes and path-
ways are enriched in DEGs. Gene ontology (GO)
analysis was performed for both up- and down-
regulated genes compared between the 50d and
5d dataset (fig. S20). Most GO terms were cell
type–specific (fig. S20A); only 20% of GO terms
were shared by more than five cell types for
down-regulated genes and 40% for up-regulated
genes.We found that one GO term from down-
regulated genes, “cytoplasmic translation,”
was shared by almost all cell types (fig. S20C).
Cytoplasmic translation refers to the ribosome-
mediated process for protein synthesis. Many
transcripts of genes encoding ribosomal pro-
teins (RPs) were decreased across cell types,
consistent with previous studies (29). There
were no globally shared GO terms among the
up-regulated genes (fig. S20B). Instead, shared
terms were restricted to specific groups of cells,
for example, signal transduction seen in neuro-
nal types andprotein phosphorylation enriched
in different non-neuronal cells.
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Wenext focusedonGOtermsenrichedwithin
a few cell types to understand the cell type–
specific regulations (Fig. 3, E and F). Fat body
cells from body and head (pericerebral adult

fat mass) shared metabolic-related GO terms
from up-regulated genes, such as lipid homeo-
stasis and triglyceride homeostasis (Fig. 3E),
reflecting commonmetabolic changes in these

tissues. For indirect flight muscles, a reduction
of locomotor behaviorwas observed and is likely
tobe causedbymuscledegeneration (Fig. 3F) (26).
Also, reproduction-related geneswere strongly
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decreased in male accessory gland main cells
(Fig. 3F), consistent with the decline in re-
productive ability inmales (30). To summarize,
we observed that genes involved in “cyto-
plasmic translation” are commonly decreased
during aging in many cell types, whereas most
other GO terms showed cell type–specific
patterns.

Aging clock to predict the biological age
To predict the biological age of an animal or hu-
man, a number of different aging clock models
have been recently developed using epigenetic
markers and transcriptomic data (8, 31, 32).
We investigated whether our snRNA-seq data
can be used to develop aging clocks. To per-
form a more accurate prediction, we focused

on cell types that have >200 cells at each age
point (64 cell types). For each cell type, we
trained a regression model (33) to predict age.
We measured predictive performance using
the coefficient of determination, R2 (Fig. 4A).
The average performance across all cell types
was high (average R2 = 0.79 for body and 0.84
for head; fig. S21).
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Outer photoreceptor cells and oenocytes
showed the highest predictive scores in head
and body, respectively (Fig. 4, B and C). Dro-
sophila oenocytes perform liver-like functions
including lipid storage andmetabolomics func-
tions, similar to fat body cells, and also produce
important cuticular pheromones (34). We con-
firmed that high scores were not caused by
higher nuclear numbers (fig. S22A). We further
asked whether there is a difference in predic-
tive performance between different time win-
dows and found that the largest transcriptomic
differences are present between the first two
ages (Fig. 4D).
Next, we focused on identifying aging clock

genes that are used to predict the age. First, we
found that most aging clock genes are used in
a cell type–specific manner (Fig. 4E). We found
that 70 out of 94 fly RP genes were identified
as aging clock genes, showing age-related re-
ductions in different cell types (Fig. 4, E to G).
These data are consistent with our previous
GO analysis where “cytoplasmic translation” is
reduced in almost all cell types (fig. S20C). De-
creasedprotein translation,which canbe caused
by the reduction of RPs, is a prevalent feature
of aging (35). To determine what transcription
factors might regulate the expression of RPs,
we used the regulon information from the FCA
(7, 36) and identified several transcription fac-
tors regulating RP genes (fig. S23). Our data
suggest that the reduction of ribosomal expres-
sion contributes to the age-related decrease of
protein synthesis. To further investigate the rela-
tionship of aging clock genes across species,
we identified aging clock genes from the Mouse
Aging Cell Atlas (27). Among 33 overlapping aging
clock genes from the fly and mouse, 31 genes
encode RPs (Fig. 4H and figs. S24 and S25).

Comprehensive aging features

Through the above analyses, we noticed that
different cell types are sensitive to different aging
features. To gain a better understanding of cell
type–specific aging, we investigated more aging
features, including expressed gene number or
transcript number (measured by UMI) changes
and decline of cell identity (Fig. 5A).
Similar to the aging clock analysis, we only

focused on cell types with at least 200 cells from
each age. Gene and UMI numbers were pre-
viously found to decrease in the old fly brain (8).
Consistent with previous observations, we ob-
served decreases in gene and UMI number in
central nervous system (CNS) neurons during
aging (fig. S26A). Tounderstandwhether such a
reduction is a general aging feature or not, we
examined all other cell types. The overall trend of
gene and UMI numbers was largely consistent
(fig. S26B). We found that ~80% of cell types ex-
hibited a decrease in expressed gene numbers,
but 20% exhibited an increase, suggesting that
aging affects expressed gene numbers in a cell
type–specific manner (Fig. 5B). Head hemocytes

and pericerebral adult fat mass had the greatest
increase in expressedgenenumbers,while oeno-
cytes, ventral nervous system cells, and fat body
cells had the greatest decrease (Fig. 5C and fig.
S26C). We confirmed that this was not caused
by sequencing depth (fig. S26D). Even though
head and body fat body cells both increased in
nuclear number (Fig. 3D), their expressed gene
numbers showed the opposite trends.
Loss of cell type identity has been shown to

occur during aging for certain cell types (12, 37).
However, how cell identity changes across the
entire organism during aging remains unchar-
acterized. To assess whether established cellu-
lar gene expression programs that define cell
identity change during aging, we developed a
measurement to combine two ratios—loss of
original markers and gain of newmarkers—by
comparing old populations with young pop-
ulations (Fig. 5D, left panel). We then ranked
cell types by their cell identity decline score
(Fig. 5D, right panel; fig. S27). The Neuroligin
1 gene,Nlg1, which was used as a marker gene
to annotate the indirect flight muscle, showed
a drastic decrease with age, as did a number of
other youngmarker genes (Fig. 5D and fig. S6A).
Meanwhile, many other gene transcripts, such
as Chchd2, began to appear in this cell type
with aging. Other than the indirect flight mus-
cle, pericerebral adult fat mass and epithelial
cells from the head were also found to exhibit
a large decrease in cell type identity (fig. S28).

Correlation and ranking of aging features

We examined four different aging features:
cell composition changes, DEGs, change of ex-
pressed gene numbers, and cell identity de-
cline. To understand the overall correlation
between them, we ranked each feature from
the least age-related change to the most. After
integrating four aging features, their correla-
tions were compared using Spearman’s corre-
lation and clusteredusing the correlation scores
(Fig. 5E). Among those features, DEG number
and decline of cell identity were highly corre-
lated, suggesting that cell types with large num-
bers of DEGs would usually fluctuate in the
expression of marker genes. On the other hand,
changes of nuclear number and expressed gene
number were more correlated with each other.
Next, we summed different feature ranks

and sorted cell types by the total rank sums,
with a higher rank indicating a more “aged”
cell type (Fig. 5F and fig. S29). Notably, the top
three cell types include three adipose cell
types—oenocytes, fat body cells, and pericere-
bral adult fatmass—suggesting that those cells
age faster than other cell types. Following
them in the ranking are male accessory gland
main cells, indirect flight muscle, and enter-
oblasts. Generally, neurons and glia from the
nervous system age slower than other cell types
(Fig. 5F). In summary, our analysis provided
the first exhaustive analysis of different aging

features and revealed the aging rates of dif-
ferent cell types across the entire organism.

Discussion

The cell atlas approach is emerging as a power-
ful tool to systematically study aging in dif-
ferent organisms, including worms (38, 39),
mice (27), and humans (40). A recent study per-
formed cross-species analysis with scRNA-seq
data from three species, including D. melano-
gaster (41). Our AFCA provides a complemen-
tary dataset and thorough analyses for studying
aging features across the whole organism.
One interesting observation is the increase

of fat body nuclei during aging. Drosophila fat
body is a liver-like tissue that stores fat and
serves as a detoxifying and immune-responsive
organ. Adult fat body cells are postmitotic poly-
ploid cells without a stem cell or progenitor
population (22). How do they increase their
nuclear number? Our observations suggest that
these polyploid cells increase their number of
nuclei by nuclear cleavage without cytokinesis,
forming multinucleated cells. To complete
karyokinesis, the nuclear envelope needs to be
reassembled or reorganized. Fat body cells
have been shown to undergo a decrease in nu-
clear envelope integrity as a result of the loss
of Lamin B during aging (42), suggesting that
the loss of nuclear envelope integrity may be
associated with the multinucleation phenome-
non. On the other hand, multinucleated cells
have also been observed in the fly male acces-
sory gland (43, 44) and subperineurial glial
cells (45), suggesting that multinucleated cells
play specific roles in Drosophila. Multinucle-
ated cells have been observed in species other
than Drosophila, including mushrooms (46),
plants (47), and the liver cells of humans and
mice (48, 49). Understanding the formation
and regulation of multinucleated cells in the
aging organism may provide new insights into
an evolutionarily conserved phenomenon, as
well as into the potential roles of multinucle-
ated cells in age-related diseases.
In this study, we focused on four different

aging features. Although these features cover
several key aspects of age-related changes, the
picture is incomplete. Additional aging mea-
surements may reveal more specific aging pat-
terns. For example, we investigated the change
of alternative polyadenylation (APA) patterns,
which can reflect short or long 3′ untranslated
region usage for different isoforms (50), and
found that neuronal extended 3′ isoforms were
progressively depleted during aging. This phe-
notype is more obvious at 70d and more pro-
nounced in females than in males (fig. S30).
These data imply a global change in posttran-
scriptional regulation in aging neurons. Thus,
future analysis may help elucidate additional
aging patterns.
One major goal of this study was to char-

acterize how different cell types age across
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the organism. Our analysis using different
aging features provides several key insights.
First, different cell types have distinct aging
patterns. For example, the ventral nervous
system showed high ranks for three aging fea-
tures but a low rank for the change of nu-
clear number, while scolopidia neurons showed
low ranks for three aging features but high
ranks for the change in expressed gene num-

ber (Fig. 5F). This observation is not unex-
pected, considering that each cell type carries
a specific function. Second, we observed a
divergence in the contribution of individual
cell types to a tissue’s aging. For example,
in the female reproductive system, follicle
cells were ranked very high (eighth of 64 cell
types), but germline cells were ranked near
the bottom (41st of 64 cell types) (fig. S29A).

This indicates that age-related declines of fe-
male fertility may be due to the aging of fol-
licle cells. Third, the top-ranked cell types
include all adipose cells. This is surprising,
and we do not fully understand the under-
lying mechanisms. It may be linked to the
fact that these cell types play multiple crit-
ical roles in different physiological condi-
tions, such as lipid storage and metabolism,
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immune responses, and interorgan commu-
nication with muscles and gut (22, 51, 52).

Materials and methods summary

This study involved collecting fly head and
body samples from wild-type F1 flies from the
cross between female W1118 and male Oregon R
(OreR). Samples from different ages were dis-
sected and stored at −80°C after flash-freezing
with liquid nitrogen. The snRNA-seq was pre-
pared using the FCA protocol (7), and each age
group had 12 samples with six females and
six males. The libraries were sequenced using
NovaSeq 6000 (Illumina).
FASTQ files were filtered for index-hooping

reads using 10xGenomics index-hopping-filter
software. The Cell Ranger (version 4.0.0) index
was built using the D. melanogaster genome
(FlyBase r6.31) and the pre-mRNA GTF estab-
lished by the FCA. Cell Ranger Count was used
to estimate the nuclei number and gene ex-
pression from each nucleus. Nuclei from dif-
ferent sexes and ages of flies were integrated
using Harmony, and cell type annotations
from FCA samples were transferred to AFCA
samples using a cluster-centered or machine
learning–based method, followed by manual
corrections.
For cell composition, age-specific ratios were

obtained by dividing the number of nuclei in
each cell type from one specific age by the total
number of nuclei in the corresponding age. The
relative ratios were then compared between
the young (5d) and old populations. Wilcoxon
rank sum tests were used to compare gene ex-
pression between different ages or sexes, and
genes with a false discovery rate (FDR) of <0.05
were considered to be differentially expressed.
Thedifferential expression of the top 200marker
genes from 5d and 50d samples was used to
estimate declines of cell type identity. Aging
rates of each cell type were calculated by in-
tegrating different aging features and ranking
the sums of aging ranks from high to low.
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Editor’s summary
Aging is a fundamental process in multicellular life, and many phenotypes associated with aging are conserved across
mammals and beyond. However, characterizing cellular processes across tissues over the life of an organism has
been historically difficult to achieve. Lu et al. performed single-nucleus RNA sequencing at multiple time points across
the life span of the fruit fly, Drosophila melanogaster. After examining more than 850,000 nuclei across 163 cell types,
the authors identified changes in gene expression and cellular composition during the aging process and used them
to develop an aging clock. This atlas will serve as a resource for studying the process of aging in this important model
organism. —Corinne Simonti
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